Sparse plus low-rank graphical models of time series for functional connectivity in MEG

نویسندگان

  • Nicholas J. Foti
  • Rahul Nadkarni
  • Adrian KC Lee
  • Emily B. Fox
چکیده

Inferring graphical models from high dimensional observations has become an important problem in machine learning and statistics because of its importance in a variety of application domains. One such application is inferring functional connectivity between brain regions from neuroimaging data such as magnetoencephalograpy (MEG) recordings that produce signals with good temporal and spatial resolution. Unfortunately, existing techniques to learn graphical models that have been applied to neuroimaging data have assumed the data to be i.i.d. over time, ignoring key temporal dynamics. Additionally, the signals that arise from neuroimaging data do not exist in isolation as the brain is performing many tasks simultaneously so that most existing methods can introduce spurious connections. We address these issues by introducing a method to learn Gaussian graphical models between multiple time series with latent processes. In addition, we allow for heterogeneity between different groups of MEG recordings by using a hierarchical penalty. The proposed methods are formulated as convex optimization problems that we efficiently solve by developing an alternating directions method of multipliers algorithm. We evaluate the proposed model on synthetic data as well as on global stock index returns and a real MEG data set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Rank and Sparse Modeling of High-dimensional Vector Autoregressions

Network modeling of high-dimensional time series in presence of unobserved latent variables is an important problem in macroeconomics and finance. In macroeconomic policy making and forecasting, it is often impossible to observe and incorporate all the relevant series in the analysis. Failure to include these variables often results in spurious connectivity among the observed time series in str...

متن کامل

Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment

Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations, which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the network. The precision matrix is a better representation ...

متن کامل

Testing for Differences in Gaussian Graphical Models: Applications to Brain Connectivity

Functional brain networks are well described and estimated from data with Gaussian Graphical Models (GGMs), e.g. using sparse inverse covariance estimators. Comparing functional connectivity of subjects in two populations calls for comparing these estimated GGMs. Our goal is to identify differences in GGMs known to have similar structure. We characterize the uncertainty of differences with conf...

متن کامل

Learning Latent Variable Gaussian Graphical Models

Gaussian graphical models (GGM) have been widely used in many highdimensional applications ranging from biological and financial data to recommender systems. Sparsity in GGM plays a central role both statistically and computationally. Unfortunately, real-world data often does not fit well to sparse graphical models. In this paper, we focus on a family of latent variable Gaussian graphical model...

متن کامل

Latent variable time-varying network inference

In many applications of finance, biology and sociology, complex systems involve entities interacting with each other. These processes have the peculiarity of evolving over time and of comprising latent factors, which influence the system without being explicitly measured. In this work we present latent variable time-varying graphical lasso (LTGL), a method for multivariate time-series graphical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016